概率的意义教学设计
[04-02 04:19:18] 来源:http://www.89xue.com 九年级数学教学设计 阅读:9488次
摘要: 然后根据学生分组试验数据,绘制散点图,学生重新观察,思考问题(2).此时可安排学生交流,讨论:这两个散点图反映出的规律是否相同?如果不同,为什么? 根据学生分组试验数据,绘制而成的散点图,有可能不能反映出这一规律.这时教师应指出:本次实验不能称为严格意义上的大量重复实验. 进而教师可引导学生,课后继续进行分组硬币抛掷试验,获得大量数据,重新绘制散点图,继续观察随着抛掷次数的增加,“正面向上”的频率在0.5的左右摆动幅度是否越来越小. 教师提出问题(3). 学生独立思考并回答. 承上启下. 充分理解上一小节学习过的一些概念(特别是随机事件这一。
概率的意义教学设计,标签:九年级数学教学设计方案,http://www.89xue.com
然后根据学生分组试验数据,绘制散点图,学生重新观察,思考问题(2).此时可安排学生交流,讨论:这两个散点图反映出的规律是否相同?如果不同,为什么?
根据学生分组试验数据,绘制而成的散点图,有可能不能反映出这一规律.这时教师应指出:本次实验不能称为严格意义上的大量重复实验.
进而教师可引导学生,课后继续进行分组硬币抛掷试验,获得大量数据,重新绘制散点图,继续观察随着抛掷次数的增加,“正面向上”的频率在0.5的左右摆动幅度是否越来越小.
教师提出问题(3).
学生独立思考并回答.
承上启下.
充分理解上一小节学习过的一些概念(特别是随机事件这一概念)是准确把握概率定义的基础和前提.
让全体学生动手参与试验,使学生了解概率这一重要概念的实际背景,感受并相信随机事件的发生存在着统计规律性.
说明:活动2中全班同学的分组可根据实际班额酌情调整.
通过逐步深入的一系列问题的提出,使学生加深对随机事件的统计规律性的认识.
对于问题(1),学生相对容易理解.
由于问题2不易理解,这样做可使学生首先获得正确的认识.
这两个散点图反映出的规律有可能是相同的.也可能是不同的,这是由于试验数据太少(仅有1000个),即有可能随着抛掷次数的增加,“正面向上”的频率在0.5的左右摆动幅度不完全是越来越小.
此时学生容易产生困惑,可能会提出一些疑问.教师应给出有针对性的,具体的指导与帮助.
同时教师还应帮助学生理解,无论试验次数多么大,我们都无法保证事件的频率值充分地接近事件的概率值.事实上,频率值“远离”概率值的可能性永远存在,但这种可能性随试验次数增大,确实会越来越小.频率由量变到达质变成为概率,反映了量变与质变的对立统一.
www.89xue.com 对于问题(3),同学们不难理解.问题(3)的设置,为后面的学习做好铺垫.
[活动3]
给出事件A的概率的定义.
问题
(1)频率与概率有什么区别与联系?
(2)当A是必然发生的事件时,P(A)是多少?当A是不可能发生的事件时,P(A)是多少?当A是随机事件时,P(A)是多少
教师给出事件A的概率定义.
教师提出问题(1).
学生思考,讨论,相互交流.
教师应帮助学生理解:
(1)一般地,频率是随着试验者,试验次数的改变而变化的.
(2)概率是一个客观常数,
(3)频率是概率的近似值,概率是频率的稳定值.它是频率的科学抽象.当试验次数越来越多时,频率围绕概率摆动的平均幅度越来越小,即频率靠近概率.
教师应指出:随机现象虽然对于个别试验来说无法预知其结果,但在相同条件下,进行大量重复试验时,却又呈现出一种规律性.
教师提出问题(2).
学生独立思考,回答.
教师应帮助学生理解:任何事件的发生都可以用概率来描述.其中必然事件的概率为1,不可能事件的概率为,随机事件的概率大于0而小于1.
概率对于学生是一个较难理解的概念.教师应帮助学生从不同方面,不同角度,不同层次去理解概率的意义.例如:通过比较频率与概率的区别与联系.
学生通过充分交流,讨论,探究,深化了对事件A的概率定义的理解,发展了学生的数学能力.
事件和不可能事件可以看作是随机事件的两种极端情形.
[活动4]
问题
(1)天气预报说下星期一降水概率是90%,下星期三降水概率是10%,于是有位同学说:下星期一肯定下雨,下星期三肯定不下雨.你认为他说的对吗?
然后根据学生分组试验数据,绘制散点图,学生重新观察,思考问题(2).此时可安排学生交流,讨论:这两个散点图反映出的规律是否相同?如果不同,为什么?
根据学生分组试验数据,绘制而成的散点图,有可能不能反映出这一规律.这时教师应指出:本次实验不能称为严格意义上的大量重复实验.
进而教师可引导学生,课后继续进行分组硬币抛掷试验,获得大量数据,重新绘制散点图,继续观察随着抛掷次数的增加,“正面向上”的频率在0.5的左右摆动幅度是否越来越小.
教师提出问题(3).
学生独立思考并回答.
承上启下.
充分理解上一小节学习过的一些概念(特别是随机事件这一概念)是准确把握概率定义的基础和前提.
让全体学生动手参与试验,使学生了解概率这一重要概念的实际背景,感受并相信随机事件的发生存在着统计规律性.
说明:活动2中全班同学的分组可根据实际班额酌情调整.
通过逐步深入的一系列问题的提出,使学生加深对随机事件的统计规律性的认识.
对于问题(1),学生相对容易理解.
由于问题2不易理解,这样做可使学生首先获得正确的认识.
这两个散点图反映出的规律有可能是相同的.也可能是不同的,这是由于试验数据太少(仅有1000个),即有可能随着抛掷次数的增加,“正面向上”的频率在0.5的左右摆动幅度不完全是越来越小.
此时学生容易产生困惑,可能会提出一些疑问.教师应给出有针对性的,具体的指导与帮助.
同时教师还应帮助学生理解,无论试验次数多么大,我们都无法保证事件的频率值充分地接近事件的概率值.事实上,频率值“远离”概率值的可能性永远存在,但这种可能性随试验次数增大,确实会越来越小.频率由量变到达质变成为概率,反映了量变与质变的对立统一.
www.89xue.com 对于问题(3),同学们不难理解.问题(3)的设置,为后面的学习做好铺垫.
[活动3]
给出事件A的概率的定义.
问题
(1)频率与概率有什么区别与联系?
(2)当A是必然发生的事件时,P(A)是多少?当A是不可能发生的事件时,P(A)是多少?当A是随机事件时,P(A)是多少
教师给出事件A的概率定义.
教师提出问题(1).
学生思考,讨论,相互交流.
教师应帮助学生理解:
(1)一般地,频率是随着试验者,试验次数的改变而变化的.
(2)概率是一个客观常数,
(3)频率是概率的近似值,概率是频率的稳定值.它是频率的科学抽象.当试验次数越来越多时,频率围绕概率摆动的平均幅度越来越小,即频率靠近概率.
教师应指出:随机现象虽然对于个别试验来说无法预知其结果,但在相同条件下,进行大量重复试验时,却又呈现出一种规律性.
教师提出问题(2).
学生独立思考,回答.
教师应帮助学生理解:任何事件的发生都可以用概率来描述.其中必然事件的概率为1,不可能事件的概率为,随机事件的概率大于0而小于1.
概率对于学生是一个较难理解的概念.教师应帮助学生从不同方面,不同角度,不同层次去理解概率的意义.例如:通过比较频率与概率的区别与联系.
学生通过充分交流,讨论,探究,深化了对事件A的概率定义的理解,发展了学生的数学能力.
事件和不可能事件可以看作是随机事件的两种极端情形.
[活动4]
问题
(1)天气预报说下星期一降水概率是90%,下星期三降水概率是10%,于是有位同学说:下星期一肯定下雨,下星期三肯定不下雨.你认为他说的对吗?
Tag:九年级数学教学设计,九年级数学教学设计方案,教学设计 - 数学教学设计 - 九年级数学教学设计
上一篇:圆周角教学设计