随机抽样教学设计
[07-12 16:26:17] 来源:http://www.89xue.com 高一数学教学设计 阅读:9311次
摘要: 第三步:在第1段用简单随机抽样确定起始的个体编号l. 第四步:按照事先确定的规则抽取样本(通常是将l加上间隔k,得到第2个编号l+k,再将(l+k)加上k,得到第3个编号l+2k,这样继续下去,直到获取整个样本). 教师明晰: 第一,编号的方式可酌情决定,如100个个体可以编号为1~100,也可以编号为(1,1),(1,2),…,(10,10)等. 第二,系统抽样与简单随机抽样的联系在于:将总体均分后的每一部分进行抽样时,采用简单随机抽样. 4. 分层抽样 (1)定 义 当总体由差异明显的几部分组成时,为了使样本更充分地反映总体的情况,常将总体分成几。
随机抽样教学设计,标签:高一数学教学设计方案,http://www.89xue.com
第三步:在第1段用简单随机抽样确定起始的个体编号l.
第四步:按照事先确定的规则抽取样本(通常是将l加上间隔k,得到第2个编号l+k,再将(l+k)加上k,得到第3个编号l+2k,这样继续下去,直到获取整个样本).
教师明晰:
第一,编号的方式可酌情决定,如100个个体可以编号为1~100,也可以编号为(1,1),(1,2),…,(10,10)等.
第二,系统抽样与简单随机抽样的联系在于:将总体均分后的每一部分进行抽样时,采用简单随机抽样.
4. 分层抽样
(1)定 义
当总体由差异明显的几部分组成时,为了使样本更充分地反映总体的情况,常将总体分成几部分,然后按照各部分所占的比例进行抽样,这种抽样叫作分层抽样,其中所分成的各部分叫作层.
教师明晰:
第一,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,故分层抽样时,每一个个体被抽到的概率都是相等的.
第二,由于分层抽样充分利用了我们掌握的信息,使样本具有较好的代表性,而且在各层抽样时,可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用.
5. 三种抽样方法的比较
教师引导学生分组讨论,归纳,并填写下表:
表26-1
类 别 共同点 各自特点 相互联系 适用范围
简单随机抽样 抽样过程中每个个体被抽取的概率相等 从总体中逐个抽取 总体中的个体数较少
系统抽样 将总体均分成几部分,按事先确定的规则在各部分抽取 在起始部分抽样时采用简单随机抽样 总体中的个体数较多
不错哦 分层抽样 将总体分成几层,分层进行抽取 各层抽样时采用简单随机抽样或系统抽样 总体由差异明显的几部分组成
[练 习]
1. 将全班女学生(或男学生)按座位编号,制作相应的卡片签,放入同一个箱子里均匀搅拌,从中抽出8个签,就相应的8名学生对看足球比赛的喜爱程度(很喜爱、喜爱、一般、不喜爱、很不喜爱)进行调查,还可对其他感兴趣的问题进行调查.
2. (1)在上面用随机数表抽取样本的例子中,再按照下面的规则来抽取容量为10的样本:从表中的某一个两位数字号码开始依次向下读数,到头后再转向它左面的两位数字号码,并向上读数,以此下去,直到取足样本.
(2)自己设计一个抽样规则,抽取上面要求的样本.
3. 一个礼堂有30排座位,每排有40个座位.一次报告会,礼堂内坐满了听众.会后,为听取意见,留下了座位号为14的所有30名听众进行座谈.这里运用了哪种抽取样本的方法?
4. 10000个有机会中奖的号码(编号为0000~9999)中,有关部门按照随机抽取的方式确定,后两位数字是37的号码为中奖号码.这是运用哪种抽样方法来确定中奖号码的?试依次写出这100个中奖号码.
5. 一个田径队中有男运动员56人,女运动员42人,用分层抽样的方法从全队的运动员中抽出一个容量为28的样本.
6. 某市的3个区共有高中学生20000人,且3个区的高中学生人数之比为2∶3∶5.现要用分层抽样的方法从所有学生中抽取一个容量为200的样本,那么分别应从这3个区中抽取多少人?
四、拓展延伸
1. 运用本节知识在本校范围内就学生的某一指标进行抽样调查,并写出实习报告.
2. 利用系统抽样从总体数为3782的总体中抽取样本容量为15的样本时,每个个体被抽取的概率是多少?
分析:找间隔 ,此时k不为整数,须从总体中剔除2个个体,每个个体被剔除的概率为 ,被保留的概率为 ,所以每个个体被抽取的概率为
点 评
这篇案例主要研究了抽样的思想方法,属于概念课.案例首先从学生日常熟悉的问题情境入手,然后展开讨论,并让学生大胆设想抽样方法.虽然他们的方法并不完善,但可以充分使学生参与知识的形成,并形成合作学习的意识,最后的"拓展延伸"是本节内容的应用和深化.该案例充分体现了从具体到抽象又从抽象到具体的模式,符合学生的认知规律。
第三步:在第1段用简单随机抽样确定起始的个体编号l.
第四步:按照事先确定的规则抽取样本(通常是将l加上间隔k,得到第2个编号l+k,再将(l+k)加上k,得到第3个编号l+2k,这样继续下去,直到获取整个样本).
教师明晰:
第一,编号的方式可酌情决定,如100个个体可以编号为1~100,也可以编号为(1,1),(1,2),…,(10,10)等.
第二,系统抽样与简单随机抽样的联系在于:将总体均分后的每一部分进行抽样时,采用简单随机抽样.
4. 分层抽样
(1)定 义
当总体由差异明显的几部分组成时,为了使样本更充分地反映总体的情况,常将总体分成几部分,然后按照各部分所占的比例进行抽样,这种抽样叫作分层抽样,其中所分成的各部分叫作层.
教师明晰:
第一,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,故分层抽样时,每一个个体被抽到的概率都是相等的.
第二,由于分层抽样充分利用了我们掌握的信息,使样本具有较好的代表性,而且在各层抽样时,可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用.
5. 三种抽样方法的比较
教师引导学生分组讨论,归纳,并填写下表:
表26-1
类 别 共同点 各自特点 相互联系 适用范围
简单随机抽样 抽样过程中每个个体被抽取的概率相等 从总体中逐个抽取 总体中的个体数较少
系统抽样 将总体均分成几部分,按事先确定的规则在各部分抽取 在起始部分抽样时采用简单随机抽样 总体中的个体数较多
不错哦 分层抽样 将总体分成几层,分层进行抽取 各层抽样时采用简单随机抽样或系统抽样 总体由差异明显的几部分组成
[练 习]
1. 将全班女学生(或男学生)按座位编号,制作相应的卡片签,放入同一个箱子里均匀搅拌,从中抽出8个签,就相应的8名学生对看足球比赛的喜爱程度(很喜爱、喜爱、一般、不喜爱、很不喜爱)进行调查,还可对其他感兴趣的问题进行调查.
2. (1)在上面用随机数表抽取样本的例子中,再按照下面的规则来抽取容量为10的样本:从表中的某一个两位数字号码开始依次向下读数,到头后再转向它左面的两位数字号码,并向上读数,以此下去,直到取足样本.
(2)自己设计一个抽样规则,抽取上面要求的样本.
3. 一个礼堂有30排座位,每排有40个座位.一次报告会,礼堂内坐满了听众.会后,为听取意见,留下了座位号为14的所有30名听众进行座谈.这里运用了哪种抽取样本的方法?
4. 10000个有机会中奖的号码(编号为0000~9999)中,有关部门按照随机抽取的方式确定,后两位数字是37的号码为中奖号码.这是运用哪种抽样方法来确定中奖号码的?试依次写出这100个中奖号码.
5. 一个田径队中有男运动员56人,女运动员42人,用分层抽样的方法从全队的运动员中抽出一个容量为28的样本.
6. 某市的3个区共有高中学生20000人,且3个区的高中学生人数之比为2∶3∶5.现要用分层抽样的方法从所有学生中抽取一个容量为200的样本,那么分别应从这3个区中抽取多少人?
四、拓展延伸
1. 运用本节知识在本校范围内就学生的某一指标进行抽样调查,并写出实习报告.
2. 利用系统抽样从总体数为3782的总体中抽取样本容量为15的样本时,每个个体被抽取的概率是多少?
分析:找间隔 ,此时k不为整数,须从总体中剔除2个个体,每个个体被剔除的概率为 ,被保留的概率为 ,所以每个个体被抽取的概率为
点 评
这篇案例主要研究了抽样的思想方法,属于概念课.案例首先从学生日常熟悉的问题情境入手,然后展开讨论,并让学生大胆设想抽样方法.虽然他们的方法并不完善,但可以充分使学生参与知识的形成,并形成合作学习的意识,最后的"拓展延伸"是本节内容的应用和深化.该案例充分体现了从具体到抽象又从抽象到具体的模式,符合学生的认知规律。
Tag:高一数学教学设计,高一数学教学设计方案,教学设计 - 数学教学设计 - 高一数学教学设计
上一篇:频率与概率教学设计