用户名: 密码: 企业 个人
当前位置:89学习网教育资料学习方法高三学习方法高三数学学习方法高三数学统计与统计案例、算法初步检测题» 正文

高三数学统计与统计案例、算法初步检测题

[07-25 14:24:32]   来源:http://www.89xue.com  高三数学学习方法   阅读:9622
摘要:解析由框图知,输出的a是a、b、c中最大的.由此可知,sin θ>cos θ,sin θ>tan θ.又θ在集合θ-π4<θ<3π4,θ≠0,π4,π2中,∴θ值所在的范围为π2,3π4.18.(12分)(2011•江西七校联考)为庆祝国庆,某中学团委组织了“歌颂祖国,爱我中华”知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(成绩均为整数)分成六段[40,50),[50,60),…,[90,100]。
高三数学统计与统计案例、算法初步检测题,标签:高三数学,http://www.89xue.com
 解析 由框图知,输出的a是a、b、c中最大的.由此可知,sin θ>cos θ,sin θ>tan θ.又θ在集合
θ-π4<θ<3π4,θ≠0,π4,π2中,∴θ值所在的范围为π2,3π4.
18.(12分)(2011•江西七校联考)为庆祝国庆,某中学团委组织了“歌颂祖国,爱我中华”知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(成绩均为整数)分成六段[40,50),[50,60),…,[90,100]后画出如图所示的部分频率分布直方图,观察图形的信息,回答下列问题.

(1)求第四小组的频率,并补全这个频率分布直方图;
(2)估计这次考试的及格率(60分及以上为及格)和平均分.
 解析 (1)设第i组的频率为fi(i=1,2,3,4,5,6),因为这六组的频率和等于1,故第四组的频率:
f4=1-(0.025+0.015×2+0.01+0.005)×10=0.3.
频率分布直方图如图所示.
新课标第一网]
(2)由题意知,及格以上的分数所在的第三、四、五、六组的频率之和为(0.015+0.03+0.025+0.005)×10=0.75,抽样学生成绩的及格率是75%.故估计这次考试的及格率为75%.利用组中值估算抽样学生的平均分:
45•f1+55•f2+65•f3+75•f4+85•f5+95•f6=45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71.从而估计这次考试的平均分是71分.
19.(12 分)国庆期间,某超市对顾客实行购物优惠活动,规定一次购物付款总额:
①若不超过200元,则不予优惠;
②若超过200元,但不超过500 元,则按所标的价格给予9折优惠;
③如果超过500元,500元的部分按②优惠,超过500元的部分给予7折优惠.
设计一个收款的算法,并画出程序框图.
 解析 依题意,付款总额y与标价x之间的关系式为(单位为元):y=xx≤200,0.9x200<x≤500,0.9×500+0.7×x-500x>500.
算法:
第一步,输入x值.
第二步,判断,如果x≤200,则输出x,结束算法;否则执行第三步.
第三步,判断,如果x≤500成立,则计算y=0.9x,并输出y,结束算法 ;否则执行第四步.
第四步,计算:y=0.9×500+0.7×(x-500),并输出y,结 束算法.
程序框图:

20.(12分)如图所示的是为了解决某个问题而绘制的程序框图,仔细分析各图框的内容及图框之间的关系,回答下列问题:
(1)该程序框图解决的是怎样的一个问题?
(2)当输入2时,输出的值为3,当输入-3时,输出的值为-2,求当输入5时,输出的值为多少?
(3)在(2)的前提下,输入的x值越大,输出的ax+b是不是越大?为什么?
(4)在(2)的前提下,当输入的x值为多大时,可使得输出的ax+b结果等于0?
 解析 (1)该程序框图解决的是求函数f(x)=ax+b的函数值问题,其中输入的是自变量x的值,输出的是x对应的函数值.
(2)由已知得2a+b=3,            ①-3a+b=-2,  ②
由①②,得a=1,b=1.f(x)=x+1,
当x输入5时,输出的值为f(5)=5+1=6.
(3)输入的x值越大,输出的函数值ax+b越大.
因为f(x)=x+1是R上的增函数.
(4)令f(x)=x+1=0,得x=-1,
因而当输入的x为-1时,
输出的函数值为0.
21.(12分)(2011•东北三校一模) 某学生对其亲属30人的饮食习惯进行了一次调查,并用茎叶图表示30人的饮食指数.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主)

(1)根据茎叶图,帮助这位学生说明其亲属30人的饮食习惯;
(2)根据以上数据完成下列2×2列联表:
主食蔬菜 主食肉类 总计
50岁以下  
50岁以上  
总计  
(3)能否有99%的把握认为其 亲属的饮食习惯与年龄有关,并写出简要分析.
附:K2=nad-bc2a+bc+da+cb+d.

上一页  [1] [2] [3] [4]  下一页


Tag:高三数学学习方法高三数学学习方法 - 高三学习方法 - 高三数学学习方法