两位数乘两位数教学设计6
【教学重点】探索两位数乘两位数(不进位)的算法,理解算理,初步形成计算技能。
【教学难点】理解“用十位去乘”时得数的写法及道理。
【教学过程】
一、引出问题
⑴师:上节课我们已经欣赏了美丽的街景,有同学提出了这样一个问题:广场前的每根灯柱上有23盏灯,有这样的12根灯柱。一共有多少盏灯?这节课我们就来解决这个问题。
⑵根据信息和问题列出算式,并简单说一说列式的根据——要求一共有多少盏灯,就是求12个23是多少。(板书:23×12)
⑶找该算式和以前学过的乘法算式有什么不同?(使学生明确知识的发展点。)
板书课题:两位数乘两位数
(设计意图:在前面打磨的过程中,有老师提出这是两位数乘两位数的第二课时,有关寻找信息、提出问题的过程在上一节课中已经完成,本节课可以直接出示上节课未解决的问题,省出时间探索算法、理解算理,提高教学的针对性和有效性。)
二、理解算理,探索算法
1.估算
⑴让学生先估一估23×12的得数。(学生估算的结果可能是200、230或者240。)
⑵引导学生想一想:23×12的实际得数比估算出来的数大还是小?为什么?
(设计意图:①在试算之前,先让学生进行估算,主要是引导学生联系上节课所学的两位数乘整十数来分析23乘12的结果大约是多少,从而为他们准确计算提供依据——在估算的过程中学生很自然的想到把12看成10,估算出的得数230,是10个23的和,还有2个23没算在里面,为下面口算准确得数渗透一些方法,实际上这也是新知识的一个生长点。②用估算的方法来确定积的大致范围,可以帮助学生验证计算的结果,培养学生用估算验证的意识。)
2.口算
⑴师:这道题的准确得数到底是多少?请同学们开动脑筋,看能不能利用以前学过的知识计算出这道题的得数?
把计算的过程简要写到练习本上,遇到困难时,可以利用老师给你提供的图(23行12列的点子图)圈一圈、想一想,也可以和小组同学交流一下。
www.89xue.com
⑵师巡视指导。(个别学生可能想不出如何转化,老师可个别启发引导:23×12表示12个23,我们能不能把12个23分开来算呢?先算10个23再算2个23,然后再合起来)
⑶交流算法。
学生可能会出现的算法:
A:23×10=230
23×2=46
230+46=276
B:20×12=240
3×12=36
240+36=276
C:23×9=207
23×3=69
207+69=276
D:23×6=138
138×2=276
……
在交流的过程中,引导学生利用点子图圈一圈,每个算式算的是哪部分?
⑷找算法的共同点,初步理解算理。
请学生说一说这些算法的共同点。(实际都是把12个23或23个12分开来求,因为分开之后能转化成以前学过的算式)
⑸小结:同学们真善于动脑筋,我们遇到了一个两位数乘两位数的算式,是以前我们没学过的,大家想到了把它转化成我们学过的两位数乘一位数和两位数乘整十数的算式,并且将所得的结果进行相加,从而解决了新的问题。看来遇到新的问题的时候,想办法把它转化成我们以前学过的旧知识,的确是一个很好的学习方法。
3.笔算
⑴请学生试着用竖式计算23×12,遇到困难可以和小组的同学一起商量。
⑵学生试做,师巡视指导。
⑶展示交流。
学生可能会出现的算法:
A: 2 3
× 1 2
2 7 6
(引导学生明确:这样列竖式没法表示出计算过程)
B: 2 3 2 3 2 3 0
× 2 × 1 0 + 4 6
4 6 2 3 0 2 7 6