从梯子的倾斜程度谈起教案2
[04-06 03:56:57] 来源:http://www.89xue.com 九年级数学教学设计 阅读:9636次
摘要: sinA= . ∠A的邻边与斜边的比叫做∠A的余弦(cosine),记作cosA,即 cosA= 锐角A的正弦、余弦和正切都是∠A的三角函数(trigonometric function). [师]你能用自己的语言解释一下你是如何理解"sinA、cosA、tanA都是∠A的三角函数"呢? [生]我们在前面已讨论过,当直角三角形中的锐角A确定时,∠A的对边与斜边的比值,∠A的邻边与斜边的比值,∠A的对边与邻边的比值也都唯一确定.在"∠A的三角函数"概念中,∠A是自变。
从梯子的倾斜程度谈起教案2,标签:九年级数学教学设计方案,http://www.89xue.com
sinA= .
∠A的邻边与斜边的比叫做∠A的余弦(cosine),记作cosA,即
cosA=
锐角A的正弦、余弦和正切都是∠A的三角函数(trigonometric function).
[师]你能用自己的语言解释一下你是如何理解"sinA、cosA、tanA都是∠A的三角函数"呢?
[生]我们在前面已讨论过,当直角三角形中的锐角A确定时,∠A的对边与斜边的比值,∠A的邻边与斜边的比值,∠A的对边与邻边的比值也都唯一确定.在"∠A的三角函数"概念中,∠A是自变量,其取值范围是0°<A<90°;三个比值是因变量.当∠A变化时,三个比值也分别有唯一确定的值与之对应.
2.梯子的倾斜程度与sinA和cosA的关系
[师]我们上一节知道了梯子的倾斜程度与tanA有关系:tanA的值越大,梯子越陡.由此我们想到梯子的倾斜程度是否也和sinA、cosA有关系呢?如果有关系,是怎样的关系?
[生]如图所示,AB=A1B1,在Rt△ABC中,sinA= ,在Rt△A1B1C中,sinA1= .
∵ < ,
即sinA<sinA1,而梯子A1B1比梯子AB陡,
所以梯子的倾斜程度与sinA有关系.sinA的值越大,梯子越陡.正弦值也能反映梯子的倾斜程度.
[生]同样道理cosA= ,cosA1= .
∵AB=A1B1, > ,即cosA>cosA1,
所以梯子的倾斜程度与cosA也有关系.cosA的值越小,梯子越陡.
[师]同学们分析得很棒,能够结合图形分析就更为妙哉!从理论上讲正弦和余弦都可以刻画梯子的倾斜程度,但实际中通常使用正切.
3.例题讲解
多媒体演示
[例1]如图,在Rt△ABC中,∠B=90°,AC=200,sinA=0.6,求BC的长.
www.89xue.com 分析:sinA不是"sin"与"A"的乘积,sinA表示∠A所在直角三角形它的对边与斜边的比值,已知sinA=0.6,即 =0.6.
解:在Rt△ABC中,∠B=90°,AC=200.
sinA=0.6,即 =0.6,BC=AC×0.6=200×0.6=120.
思考:(1)cosA=?
(2)sinC=? cosC=?
(3)由上面计算,你能猜想出什么结论?
解:根据勾股定理,得
AB= =160.
在Rt△ABC中,CB=90°.
cosA= =0.8,
sinC= =0.8,
cosC= =0.6.
由上面的计算可知
sinA=cosC=0.6,
cosA=sinC=0.8.
因为∠A+∠C=90°,所以,结论为"一个锐角的正弦等于它余角的余弦""一个锐角的余弦等于它余角的正弦".
[例2]做一做:
如图,在Rt△ABC中,∠C=90°,cosA= ,AC=10,AB等于多少?sinB呢?cosB、sinA呢?你还能得出类似例1的结论吗?请用一般式表达.
分析:这是正弦、余弦定义的进一步应用,同时进一步渗透sin(90°-A)=cosA,cos(90°-A)=sinA.
解:在Rt△ABC中,∠C=90°,AC=10,cosA= ,cosA= ,
∴AB= =10× ,
sinB= =cosA= .
根据勾股定理,得
BC2=AB2-AC2=( )2-102=
∴BC= .
∴cosB= ,
sinA= .
可以得出同例1一样的结论.
∵∠A+∠B=90°,
sinA= .
∠A的邻边与斜边的比叫做∠A的余弦(cosine),记作cosA,即
cosA=
锐角A的正弦、余弦和正切都是∠A的三角函数(trigonometric function).
[师]你能用自己的语言解释一下你是如何理解"sinA、cosA、tanA都是∠A的三角函数"呢?
[生]我们在前面已讨论过,当直角三角形中的锐角A确定时,∠A的对边与斜边的比值,∠A的邻边与斜边的比值,∠A的对边与邻边的比值也都唯一确定.在"∠A的三角函数"概念中,∠A是自变量,其取值范围是0°<A<90°;三个比值是因变量.当∠A变化时,三个比值也分别有唯一确定的值与之对应.
2.梯子的倾斜程度与sinA和cosA的关系
[师]我们上一节知道了梯子的倾斜程度与tanA有关系:tanA的值越大,梯子越陡.由此我们想到梯子的倾斜程度是否也和sinA、cosA有关系呢?如果有关系,是怎样的关系?
[生]如图所示,AB=A1B1,在Rt△ABC中,sinA= ,在Rt△A1B1C中,sinA1= .
∵ < ,
即sinA<sinA1,而梯子A1B1比梯子AB陡,
所以梯子的倾斜程度与sinA有关系.sinA的值越大,梯子越陡.正弦值也能反映梯子的倾斜程度.
[生]同样道理cosA= ,cosA1= .
∵AB=A1B1, > ,即cosA>cosA1,
所以梯子的倾斜程度与cosA也有关系.cosA的值越小,梯子越陡.
[师]同学们分析得很棒,能够结合图形分析就更为妙哉!从理论上讲正弦和余弦都可以刻画梯子的倾斜程度,但实际中通常使用正切.
3.例题讲解
多媒体演示
[例1]如图,在Rt△ABC中,∠B=90°,AC=200,sinA=0.6,求BC的长.
www.89xue.com 分析:sinA不是"sin"与"A"的乘积,sinA表示∠A所在直角三角形它的对边与斜边的比值,已知sinA=0.6,即 =0.6.
解:在Rt△ABC中,∠B=90°,AC=200.
sinA=0.6,即 =0.6,BC=AC×0.6=200×0.6=120.
思考:(1)cosA=?
(2)sinC=? cosC=?
(3)由上面计算,你能猜想出什么结论?
解:根据勾股定理,得
AB= =160.
在Rt△ABC中,CB=90°.
cosA= =0.8,
sinC= =0.8,
cosC= =0.6.
由上面的计算可知
sinA=cosC=0.6,
cosA=sinC=0.8.
因为∠A+∠C=90°,所以,结论为"一个锐角的正弦等于它余角的余弦""一个锐角的余弦等于它余角的正弦".
[例2]做一做:
如图,在Rt△ABC中,∠C=90°,cosA= ,AC=10,AB等于多少?sinB呢?cosB、sinA呢?你还能得出类似例1的结论吗?请用一般式表达.
分析:这是正弦、余弦定义的进一步应用,同时进一步渗透sin(90°-A)=cosA,cos(90°-A)=sinA.
解:在Rt△ABC中,∠C=90°,AC=10,cosA= ,cosA= ,
∴AB= =10× ,
sinB= =cosA= .
根据勾股定理,得
BC2=AB2-AC2=( )2-102=
∴BC= .
∴cosB= ,
sinA= .
可以得出同例1一样的结论.
∵∠A+∠B=90°,
Tag:九年级数学教学设计,九年级数学教学设计方案,教学设计 - 数学教学设计 - 九年级数学教学设计
上一篇:正切和余切教案1