用户名: 密码: 企业 个人
当前位置:89学习网教育资料教学设计数学教学设计九年级数学教学设计判别一元二次方程根的情况教案» 正文

判别一元二次方程根的情况教案

[03-30 05:17:55]   来源:http://www.89xue.com  九年级数学教学设计   阅读:9252
摘要:教学内容 用b2-4ac大于、等于0、小于0判别ax2+bx+c=0(a≠0)的根的情况及其运用. 教学目标 掌握b2-4ac>0,ax2+bx+c=0(a≠0)有两个不等的实根,反之也成立;b2-4ac=0,ax2+bx+c=0(a≠0)有两个相等的实数根,反之也成立;b2-4ac<0,ax2+bx+c=0(a≠0)没实根,反之也成立;及其它们关系的运用. 通过复习用配方法解一元二次方程的b2-4ac>0、b2-4ac=0、b2-4ac<0各一题,分析它们根的情况,从具体到一般,给出三个结论并应用它们解决一些具体题目. 重难点关键 。
判别一元二次方程根的情况教案,标签:九年级数学教学设计方案,http://www.89xue.com

教学内容
    用b2-4ac大于、等于0、小于0判别ax2+bx+c=0(a≠0)的根的情况及其运用.
    教学目标
    掌握b2-4ac>0,ax2+bx+c=0(a≠0)有两个不等的实根,反之也成立;b2-4ac=0,ax2+bx+c=0(a≠0)有两个相等的实数根,反之也成立;b2-4ac<0,ax2+bx+c=0(a≠0)没实根,反之也成立;及其它们关系的运用.
    通过复习用配方法解一元二次方程的b2-4ac>0、b2-4ac=0、b2-4ac<0各一题,分析它们根的情况,从具体到一般,给出三个结论并应用它们解决一些具体题目.
    重难点关键
    1.重点:b2-4ac>0 一元二次方程有两个不相等的实根;b2-4ac=0 一元二次方程有两个相等的实数;b2-4ac<0 一元二次方程没有实根.
    2.难点与关键
    从具体题目来推出一元二次方程ax2+bx+c=0(a≠0)的b2-4ac的情况与根的情况的关系.
    教具、学具准备
    小黑板
    教学过程
    一、复习引入
    (学生活动)用公式法解下列方程.
    (1)2x2-3x=0    (2)3x2-2 x+1=0    (3)4x2+x+1=0
    老师点评,(三位同学到黑板上作)老师只要点评(1)b2-4ac=9>0,有两个不相等的实根;(2)b2-4ac=12-12=0,有两个相等的实根;(3)b2-4ac=│-4×4×1│=<0,方程没有实根.
    二、探索新知
    方程 b2-4ac的值 b2-4ac的符号 x1、x2的关系
    (填相等、不等或不存在)
    2x2-3x=0  
    3x2-2 x+1=0
    4x2+x+1=0  
    请观察上表,结合b2-4ac的符号,归纳出一元二次方程的根的情况。证明你的猜想。
    从前面的具体问题,我们已经知道b2-4ac>0(<0,=0)与根的情况,现在我们从求根公式的角度来分析:
    求根公式:x= ,当b2-4ac>0时,根据平方根的意义, 等于一个具体数,所以一元一次方程的x1= ≠x1= ,即有两个不相等的实根.当b2-4ac=0时,根据平方根的意义 =0,所以x1=x2= ,即有两个相等的实根;当b2-4ac<0时,根据平方根的意义,负数没有平方根,所以没有实数解.
    因此,(结论)(1)当b2-4ac>0时,一元二次方程ax2+bx+c=0(a≠0)有两个不相等实数根即x1= ,x2= .
    (2)当b-4ac=0时,一元二次方程ax2+bx+c=0(a≠0)有两个相等实数根即x1=x2= .
    (3)当b2-4ac<0时,一元二次方程ax2+bx+c=0(a≠0)没有实数根.
    例1.不解方程,判定方程根的情况
    (1)16x2+8x=-3    (2)9x2+6x+1=0
    (3)2x2-9x+8=0    (4)x2-7x-18=0
    分析:不解方程,判定根的情况,只需用b2-4ac的值大于0、小于0、等于0的情况进行分析即可.
    解:(1)化为16x2+8x+3=0
    这里a=16,b=8,c=3,b2-4ac=64-4×16×3=-128<0
    所以,方程没有实数根.
    三、巩固练习
    不解方程判定下列方程根的情况:
    (1)x2+10x+26=0    (2)x2-x- =0      (3)3x2+6x-5=0      (4)4x2-x+ =0
    (5)x2- x- =0  (6)4x2-6x=0      (7)x(2x-4)=5-8x
    四、应用拓展
    例2.若关于x的一元二次方程(a-2)x2-2ax+a+1=0没有实数解,求ax+3>0的解集(用含a的式子表示).
    分析:要求ax+3>0的解集,就是求ax>-3的解集,那么就转化为要判定a的值是正、负或0.因为一元二次方程(a-2)x2-2ax+a+1=0没有实数根,即(-2a)2-4(a-2)(a+1)<0就可求出a的取值范围.

[1] [2]  下一页


Tag:九年级数学教学设计九年级数学教学设计方案教学设计 - 数学教学设计 - 九年级数学教学设计