空间直角坐标系教学设计
[07-12 16:26:20] 来源:http://www.89xue.com 高一数学教学设计 阅读:9194次
摘要: (1)在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,若中指指向z轴的正方向则称这个坐标系为右手坐标系,课本中建立的坐标系都是右手坐标系. (2)将空间直角坐标系O-xyz画在纸上时,x轴与y轴、x轴与z轴成135°,而y轴垂直于z轴,y轴和z轴的单位长度相等,但x轴上的单位长度等于y轴和z轴上的单位长度的 ,这样,三条轴上的单位长度直观上大致相等. 2. 空间直角坐标系O-xyz中点的坐标. 思考:在空间直角坐标系中,空间任意一点A与有序数组(x,y,z)有什么样的对应关系? 在学生充分讨论思考之后,教师明确: (1)过点A作三个平面分别垂直于。
空间直角坐标系教学设计,标签:高一数学教学设计方案,http://www.89xue.com
(1)在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,若中指指向z轴的正方向则称这个坐标系为右手坐标系,课本中建立的坐标系都是右手坐标系.
(2)将空间直角坐标系O-xyz画在纸上时,x轴与y轴、x轴与z轴成135°,而y轴垂直于z轴,y轴和z轴的单位长度相等,但x轴上的单位长度等于y轴和z轴上的单位长度的 ,这样,三条轴上的单位长度直观上大致相等.
2. 空间直角坐标系O-xyz中点的坐标.
思考:在空间直角坐标系中,空间任意一点A与有序数组(x,y,z)有什么样的对应关系?
在学生充分讨论思考之后,教师明确:
(1)过点A作三个平面分别垂直于x轴,y轴,z轴,它们与x轴、y轴、z轴分别交于点P,Q,R,点P,Q,R在相应数轴上的坐标依次为x,y,z,这样,对空间任意点A,就定义了一个有序数组(x,y,z).
(2)反之,对任意一个有序数组(x,y,z),按照刚才作图的相反顺序,在坐标轴上分别作出点P,Q,R,使它们在x轴、y轴、z轴上的坐标分别是x,y,z,再分别过这些点作垂直于各自所在的坐标轴的平面,这三个平面的交点就是所求的点A.
这样,在空间直角坐标系中,空间任意一点A与有序数组(x,y,z)之间就建立了一种一一对应关系:A (x,y,z).
教师进一步指出:空间直角坐标系O-xyz中任意点A的坐标的概念
对于空间任意点A,作点A在三条坐标轴上的射影,即经过点A作三个平面分别垂直于x轴、y轴和z轴,它们与x轴、y轴、z轴分别交于点P,Q,R,点P,Q,R在相应数轴上的坐标依次为x,y,z,我们把有序数组(x,y,z)叫作点A的坐标,记为A(x,y,z).(如图26-4)
三、解释应用
[例 题]
1. 在空间直角坐标系O-xyz中,作出点P(5,4,6).
注意:在分析中紧扣坐标定义,强调三个步骤,第一步从原点出发沿x轴正方向移动5个单位,第二步沿与y轴平行的方向向右移动4个单位,第三步沿与z轴平行的方向向上移动6个单位(如图26-5).
不错哦 2. (1)在空间直角坐标系中,坐标平面xOy,xOz,yOz上点的坐标有什么特点?
(2)在空间直角坐标系中,x轴、y轴、z轴上点的坐标有什么特点?
解:(1)xOy平面、xOz平面、yOz平面内的点的坐标分别形如(x,y,0),(x,0,z),(0,y,z).
(2)x轴、y轴、z轴上点的坐标分别形如(x,0,0),(0,y,0),(0,0,z).
3. 已知长方体ABCD-A′B′C′D′的边长AB=12,AD=8,AA′=5,以这个长方体的顶点A为坐标原点,射线AB,AD,AA′分别为x轴、y轴和z轴的正半轴,建立空间直角坐标系,求这个长方体各个顶点的坐标.
注意:此题可以由学生口答,教师点评.
解:A(0,0,0),B(12,0,0),D(0,8,0),A′(0,0,5),C(12,8,0),B′(12,0,5),D′(0,8,5),C′(12,8,5).
讨论:若以C点为原点,以射线CB,CD,CC′方向分别为x,y,z轴的正半轴,建立空间直角坐标系,那么各顶点的坐标又是怎样的呢?
得出结论:建立不同的坐标系,所得的同一点的坐标也不同.
[练 习]
1. 在空间直角坐标系中,画出下列各点:A(0,0,3),B(1,2,3),C(2,0,4),D(-1,2,-2).
2. 已知:长方体ABCD-A′B′C′D′的边长AB=12,AD=8,AA′=7,以这个长方体的顶点B为坐标原点,射线AB,BC,BB′分别为x轴、y轴和z轴的正半轴,建立空间直角坐标系,求这个长方体各个顶点的坐标.
3. 写出坐标平面yOz上∠yOz平分线上的点的坐标满足的条件.
四、拓展延伸
1. 分别写出点(1,1,1)关于各坐标轴和各个坐标平面对称的点的坐标.
2. 设z为任意实数,相应的所有点P(1,2,z)的集合是什么图形?
(1)在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,若中指指向z轴的正方向则称这个坐标系为右手坐标系,课本中建立的坐标系都是右手坐标系.
(2)将空间直角坐标系O-xyz画在纸上时,x轴与y轴、x轴与z轴成135°,而y轴垂直于z轴,y轴和z轴的单位长度相等,但x轴上的单位长度等于y轴和z轴上的单位长度的 ,这样,三条轴上的单位长度直观上大致相等.
2. 空间直角坐标系O-xyz中点的坐标.
思考:在空间直角坐标系中,空间任意一点A与有序数组(x,y,z)有什么样的对应关系?
在学生充分讨论思考之后,教师明确:
(1)过点A作三个平面分别垂直于x轴,y轴,z轴,它们与x轴、y轴、z轴分别交于点P,Q,R,点P,Q,R在相应数轴上的坐标依次为x,y,z,这样,对空间任意点A,就定义了一个有序数组(x,y,z).
(2)反之,对任意一个有序数组(x,y,z),按照刚才作图的相反顺序,在坐标轴上分别作出点P,Q,R,使它们在x轴、y轴、z轴上的坐标分别是x,y,z,再分别过这些点作垂直于各自所在的坐标轴的平面,这三个平面的交点就是所求的点A.
这样,在空间直角坐标系中,空间任意一点A与有序数组(x,y,z)之间就建立了一种一一对应关系:A (x,y,z).
教师进一步指出:空间直角坐标系O-xyz中任意点A的坐标的概念
对于空间任意点A,作点A在三条坐标轴上的射影,即经过点A作三个平面分别垂直于x轴、y轴和z轴,它们与x轴、y轴、z轴分别交于点P,Q,R,点P,Q,R在相应数轴上的坐标依次为x,y,z,我们把有序数组(x,y,z)叫作点A的坐标,记为A(x,y,z).(如图26-4)
三、解释应用
[例 题]
1. 在空间直角坐标系O-xyz中,作出点P(5,4,6).
注意:在分析中紧扣坐标定义,强调三个步骤,第一步从原点出发沿x轴正方向移动5个单位,第二步沿与y轴平行的方向向右移动4个单位,第三步沿与z轴平行的方向向上移动6个单位(如图26-5).
不错哦 2. (1)在空间直角坐标系中,坐标平面xOy,xOz,yOz上点的坐标有什么特点?
(2)在空间直角坐标系中,x轴、y轴、z轴上点的坐标有什么特点?
解:(1)xOy平面、xOz平面、yOz平面内的点的坐标分别形如(x,y,0),(x,0,z),(0,y,z).
(2)x轴、y轴、z轴上点的坐标分别形如(x,0,0),(0,y,0),(0,0,z).
3. 已知长方体ABCD-A′B′C′D′的边长AB=12,AD=8,AA′=5,以这个长方体的顶点A为坐标原点,射线AB,AD,AA′分别为x轴、y轴和z轴的正半轴,建立空间直角坐标系,求这个长方体各个顶点的坐标.
注意:此题可以由学生口答,教师点评.
解:A(0,0,0),B(12,0,0),D(0,8,0),A′(0,0,5),C(12,8,0),B′(12,0,5),D′(0,8,5),C′(12,8,5).
讨论:若以C点为原点,以射线CB,CD,CC′方向分别为x,y,z轴的正半轴,建立空间直角坐标系,那么各顶点的坐标又是怎样的呢?
得出结论:建立不同的坐标系,所得的同一点的坐标也不同.
[练 习]
1. 在空间直角坐标系中,画出下列各点:A(0,0,3),B(1,2,3),C(2,0,4),D(-1,2,-2).
2. 已知:长方体ABCD-A′B′C′D′的边长AB=12,AD=8,AA′=7,以这个长方体的顶点B为坐标原点,射线AB,BC,BB′分别为x轴、y轴和z轴的正半轴,建立空间直角坐标系,求这个长方体各个顶点的坐标.
3. 写出坐标平面yOz上∠yOz平分线上的点的坐标满足的条件.
四、拓展延伸
1. 分别写出点(1,1,1)关于各坐标轴和各个坐标平面对称的点的坐标.
2. 设z为任意实数,相应的所有点P(1,2,z)的集合是什么图形?
Tag:高一数学教学设计,高一数学教学设计方案,教学设计 - 数学教学设计 - 高一数学教学设计
上一篇:圆的方程教学设计