相似三角形教案
[04-06 03:56:57] 来源:http://www.89xue.com 九年级数学教学设计 阅读:9471次
摘要: 再设△ABC中AC=b,△DEF中DF=a,则 AC=BC=b,AB= b DF=EF=a,DE= a ∴ 所以两个等腰直角三角形一定相似. (3)两个等腰三角形不一定相似. 因为等腰只能说明一个三角形中有两边相等,但另一边不固定,因此这两个等腰三角形中有两边对应成比例,两底边的比不一定等于对应腰的比,因此不用再去讨论对应角满足什么条件,就可以确定这两个等腰三角形不一定相似. 两个等边三角形一定相似. 因为等边三角形的各边都相等,各角都等于60度,因此这两个等边三角形一定有对应角相等、对应边成比例,所以它们一定相似. [师]由上可知,在。
相似三角形教案,标签:九年级数学教学设计方案,http://www.89xue.com
再设△ABC中AC=b,△DEF中DF=a,则
AC=BC=b,AB= b
DF=EF=a,DE= a
∴
所以两个等腰直角三角形一定相似.
(3)两个等腰三角形不一定相似.
因为等腰只能说明一个三角形中有两边相等,但另一边不固定,因此这两个等腰三角形中有两边对应成比例,两底边的比不一定等于对应腰的比,因此不用再去讨论对应角满足什么条件,就可以确定这两个等腰三角形不一定相似.
两个等边三角形一定相似.
因为等边三角形的各边都相等,各角都等于60度,因此这两个等边三角形一定有对应角相等、对应边成比例,所以它们一定相似.
[师]由上可知,在特殊的三角形中,有的相似,有的不相似.
两个全等三角形一定相似.
两个等腰直角三角形一定相似.
两个等边三角形一定相似.
两个直角三角形和两个等腰三角形不一定相似.
4.例题
投影片(§4.5 B)
1.如图,有一块呈三角形形状的草坪,其中一边的长是20 m,在这个草坪的图纸上,这条边长5 cm,其他两边的长都是3.5 cm,求该草坪其他两边的实际长度.
图4-20
解:草坪的形状与其图纸上相应的形状相似,它们的相似比是2000∶5=400∶1
如果设其他两边的实际长度都是x cm,则
x=3.5×400=1400(cm)=14(m)
所以,草坪其他两边的实际长度都是14 m .
投影片(§4.5 C)
2.如图,已知△ABC∽△ADE,AE=50 cm,EC=30 cm,BC=70 cm,∠BAC=45°,∠ACB=40°,求
www.89xue.com 图4-21
(1)∠AED和∠ADE的度数;
(2)DE的长.
解:(1)因为△ABC∽△ADE.
所以由相似三角形对应角相等,得
∠AED=∠ACB=40°
在△ADE中,
∠AED+∠ADE+∠A=180°
即40°+∠ADE+45°=180°,
所以∠ADE=180°-40°-45°=95°.
(2)因为△ABC∽△ADE,所以由相似三角形对应边成比例,得
即
所以
DE= =43.75(cm).
5.想一想
在例2的条件下,图中有哪些线段成比例?
[师]请大家试一试.
[生]成比例线段有
图中有互相平行的线段,即DE∥BC.因为△ABC∽△ADE,所以∠ADE=∠B.由平行线的判定方法知DE∥BC.
Ⅲ.课堂练习
1.在下面的两组图形中,各有两个相似三角形,试确定x,y,m,n的值.
图4-22
解:在(1)中
因为 =
所以x=32
在(2)中,由两三角形相似可知:对应角相等,对应边成比例.所以,
n=55,m=80
,得y=
2.等腰直角三角形ABC与等腰直角三角形A′B′C′相似,相似比为3∶1,已知斜边AB=5 cm,求△A′B′C′斜边A′B′上的高.
图4-23
解:如图所示:CD、C′D′分别是△ABC与△A′B′C′斜边AB与A′B′边上的高.
因为在Rt△ABC中,∠A=45°,CD⊥AB.
再设△ABC中AC=b,△DEF中DF=a,则
AC=BC=b,AB= b
DF=EF=a,DE= a
∴
所以两个等腰直角三角形一定相似.
(3)两个等腰三角形不一定相似.
因为等腰只能说明一个三角形中有两边相等,但另一边不固定,因此这两个等腰三角形中有两边对应成比例,两底边的比不一定等于对应腰的比,因此不用再去讨论对应角满足什么条件,就可以确定这两个等腰三角形不一定相似.
两个等边三角形一定相似.
因为等边三角形的各边都相等,各角都等于60度,因此这两个等边三角形一定有对应角相等、对应边成比例,所以它们一定相似.
[师]由上可知,在特殊的三角形中,有的相似,有的不相似.
两个全等三角形一定相似.
两个等腰直角三角形一定相似.
两个等边三角形一定相似.
两个直角三角形和两个等腰三角形不一定相似.
4.例题
投影片(§4.5 B)
1.如图,有一块呈三角形形状的草坪,其中一边的长是20 m,在这个草坪的图纸上,这条边长5 cm,其他两边的长都是3.5 cm,求该草坪其他两边的实际长度.
图4-20
解:草坪的形状与其图纸上相应的形状相似,它们的相似比是2000∶5=400∶1
如果设其他两边的实际长度都是x cm,则
x=3.5×400=1400(cm)=14(m)
所以,草坪其他两边的实际长度都是14 m .
投影片(§4.5 C)
2.如图,已知△ABC∽△ADE,AE=50 cm,EC=30 cm,BC=70 cm,∠BAC=45°,∠ACB=40°,求
www.89xue.com 图4-21
(1)∠AED和∠ADE的度数;
(2)DE的长.
解:(1)因为△ABC∽△ADE.
所以由相似三角形对应角相等,得
∠AED=∠ACB=40°
在△ADE中,
∠AED+∠ADE+∠A=180°
即40°+∠ADE+45°=180°,
所以∠ADE=180°-40°-45°=95°.
(2)因为△ABC∽△ADE,所以由相似三角形对应边成比例,得
即
所以
DE= =43.75(cm).
5.想一想
在例2的条件下,图中有哪些线段成比例?
[师]请大家试一试.
[生]成比例线段有
图中有互相平行的线段,即DE∥BC.因为△ABC∽△ADE,所以∠ADE=∠B.由平行线的判定方法知DE∥BC.
Ⅲ.课堂练习
1.在下面的两组图形中,各有两个相似三角形,试确定x,y,m,n的值.
图4-22
解:在(1)中
因为 =
所以x=32
在(2)中,由两三角形相似可知:对应角相等,对应边成比例.所以,
n=55,m=80
,得y=
2.等腰直角三角形ABC与等腰直角三角形A′B′C′相似,相似比为3∶1,已知斜边AB=5 cm,求△A′B′C′斜边A′B′上的高.
图4-23
解:如图所示:CD、C′D′分别是△ABC与△A′B′C′斜边AB与A′B′边上的高.
因为在Rt△ABC中,∠A=45°,CD⊥AB.
Tag:九年级数学教学设计,九年级数学教学设计方案,教学设计 - 数学教学设计 - 九年级数学教学设计
上一篇:从梯子的倾斜程度谈起教案1