用坐标表示轴对称教案
[04-09 14:37:47] 来源:http://www.89xue.com 八年级数学教学设计 阅读:9825次
摘要: E″(-4,0) [师]观察上表,比较每对关于y轴的对称点的坐标,你能发现什么规律? [生]关于y轴对称的每一对对称点的坐标纵坐标相同,横坐标互为相反数. Ⅲ.随堂练习 [活动3] 练习:(教科书P133练习) 1.分别写出下列各点关于x轴和y轴对称的点的坐标: (-2,6),(1,-2),(-1,3),(-4,-2),(1,0). 2.如图,△ABC关于x轴对称,点A的坐标为(1,-2),标出点B的坐标. 3.如图,利用关于坐标轴对称的点的坐标的特点,分别作出与△ABC关于x轴和y轴对称的图形. 设计意图: 巩固关于x轴、y。
用坐标表示轴对称教案,标签:八年级数学教学设计方案,http://www.89xue.com
E″(-4,0)
[师]观察上表,比较每对关于y轴的对称点的坐标,你能发现什么规律?
[生]关于y轴对称的每一对对称点的坐标纵坐标相同,横坐标互为相反数.
Ⅲ.随堂练习
[活动3]
练习:(教科书P133练习)
1.分别写出下列各点关于x轴和y轴对称的点的坐标:
(-2,6),(1,-2),(-1,3),(-4,-2),(1,0).
2.如图,△ABC关于x轴对称,点A的坐标为(1,-2),标出点B的坐标.
3.如图,利用关于坐标轴对称的点的坐标的特点,分别作出与△ABC关于x轴和y轴对称的图形.
设计意图:
巩固关于x轴、y轴对称的每对对称点的坐标规律.根据已知点,能求出关于x轴、y轴对称的点的坐标,并能利用关于坐标轴对称的点的坐标特点,作出与已知图形关于坐标轴对称的图形.
师生行为:
学生练习,教师巡视,师生共评.
[生]1.解:根据关于x轴对称的点的坐标的特点求得(-2,6),(1,-2),(-1,3),(-4,-2),(1,0)关于x轴对称的点的坐标分别为(-2,-6),(1,2),(-1,-3),(-4,2),(1,0).
根据关于y轴对称的点的坐标的特点可得(-2,6),(1,-2),(-1,3),(-4,-2),(1,0)关于y轴对称的点的坐标分别为(2,6),(-1,-2),(1,3),(4,-2),(-1,0).
2.△ABC关于x轴对称,则A、B为关于x轴的一对对称点,已知A的坐标为(1,-2),则B的坐标为(1,2).
3.分析:要作出与△ABC关于x轴、y轴的对称图形,只需把A、B、C关于x轴、y轴的对称点找到即可.
解:△ABC各顶点的坐标:A(-4,1),B(-1,-1),C(-3,2)它们关于x轴对称的点的坐标为A1(-4,-1),B1(-1,1),C1(-3,-2).在同一直角坐标系中描出A1(-4,-1),B1(-1,1),C1(-3,-2)连结A1B1,B1C1,C1A1,则△A1B1C1就是△ABC关于x轴对称的图形(如图).
A(-4,1),B(-1,-1),C(-3,2)它们关于y轴对称的点的坐标为A2(4,1),B2(1,-1),C2(3,2).在同一坐标系中描出A2(4,1),B2(1,-1),C2(3,2),连结A2B2,B2C2,C2A2,则△A2B2C2就是△ABC关于y轴对称的图形(如图).
[活动4]
补充练习:
1.将下图中的点(2,1),(5,1),(2,5)做如下变化:
(1)纵坐标不变,横坐标分别加2.
(2)横坐标不变,纵坐标分别加1.
(3)纵坐标不变,横坐标分别变为原来的2倍.
(4)横坐标不变,纵坐标分别变为原来的2倍.
(5)纵坐标不变,横坐标分别乘以-1.
(6)横坐标不变,纵坐标分别乘以-1.
(7)纵坐标、横都分别乘以-1,观察变化后的三角形与原三角形有什么变化?
设计意图:
进一步让同学们亲身经历点的坐标的变化与图形变换之间的关系.
师生行为:
学生练习,教师指导.
精析:行根据变化,把每次变化后的三个顶点坐标求出,在平面直角坐标系中描出它们,连结成新三角形,然后与原有的三角形进行比较.
精解:(1)纵坐标不变,横坐标分别加2得三个点依次为(4,1),(7,1),(4,5).将各点用线段依次连结起来,所得图形如图(1)所示,与原图形相比三角形的形状、大小不变,整个三角形向右平移了2个单位长度.
(2)横坐标不变,纵坐标分别加1,得三个点依次为(2,2),(5,2),(2,6).将各点用线段依次连结起来,所得图形如图(2)所示,与原图形相比,三角形的形状、大小不变,整个三角形向上平移了1个单位长度.
(3)纵坐标不变,横坐标分别变为原来的2倍,得三个点依次为(4,1),(10,1),(4,5).将各点用线段依次连结起来,所得图形如图(3)所示,与原图形相比,整个三角形被横向拉长为原来的2倍.
E″(-4,0)
[师]观察上表,比较每对关于y轴的对称点的坐标,你能发现什么规律?
[生]关于y轴对称的每一对对称点的坐标纵坐标相同,横坐标互为相反数.
Ⅲ.随堂练习
[活动3]
练习:(教科书P133练习)
1.分别写出下列各点关于x轴和y轴对称的点的坐标:
(-2,6),(1,-2),(-1,3),(-4,-2),(1,0).
2.如图,△ABC关于x轴对称,点A的坐标为(1,-2),标出点B的坐标.
3.如图,利用关于坐标轴对称的点的坐标的特点,分别作出与△ABC关于x轴和y轴对称的图形.
设计意图:
巩固关于x轴、y轴对称的每对对称点的坐标规律.根据已知点,能求出关于x轴、y轴对称的点的坐标,并能利用关于坐标轴对称的点的坐标特点,作出与已知图形关于坐标轴对称的图形.
师生行为:
学生练习,教师巡视,师生共评.
[生]1.解:根据关于x轴对称的点的坐标的特点求得(-2,6),(1,-2),(-1,3),(-4,-2),(1,0)关于x轴对称的点的坐标分别为(-2,-6),(1,2),(-1,-3),(-4,2),(1,0).
根据关于y轴对称的点的坐标的特点可得(-2,6),(1,-2),(-1,3),(-4,-2),(1,0)关于y轴对称的点的坐标分别为(2,6),(-1,-2),(1,3),(4,-2),(-1,0).
2.△ABC关于x轴对称,则A、B为关于x轴的一对对称点,已知A的坐标为(1,-2),则B的坐标为(1,2).
3.分析:要作出与△ABC关于x轴、y轴的对称图形,只需把A、B、C关于x轴、y轴的对称点找到即可.
解:△ABC各顶点的坐标:A(-4,1),B(-1,-1),C(-3,2)它们关于x轴对称的点的坐标为A1(-4,-1),B1(-1,1),C1(-3,-2).在同一直角坐标系中描出A1(-4,-1),B1(-1,1),C1(-3,-2)连结A1B1,B1C1,C1A1,则△A1B1C1就是△ABC关于x轴对称的图形(如图).
A(-4,1),B(-1,-1),C(-3,2)它们关于y轴对称的点的坐标为A2(4,1),B2(1,-1),C2(3,2).在同一坐标系中描出A2(4,1),B2(1,-1),C2(3,2),连结A2B2,B2C2,C2A2,则△A2B2C2就是△ABC关于y轴对称的图形(如图).
[活动4]
补充练习:
1.将下图中的点(2,1),(5,1),(2,5)做如下变化:
(1)纵坐标不变,横坐标分别加2.
(2)横坐标不变,纵坐标分别加1.
(3)纵坐标不变,横坐标分别变为原来的2倍.
(4)横坐标不变,纵坐标分别变为原来的2倍.
(5)纵坐标不变,横坐标分别乘以-1.
(6)横坐标不变,纵坐标分别乘以-1.
(7)纵坐标、横都分别乘以-1,观察变化后的三角形与原三角形有什么变化?
设计意图:
进一步让同学们亲身经历点的坐标的变化与图形变换之间的关系.
师生行为:
学生练习,教师指导.
精析:行根据变化,把每次变化后的三个顶点坐标求出,在平面直角坐标系中描出它们,连结成新三角形,然后与原有的三角形进行比较.
精解:(1)纵坐标不变,横坐标分别加2得三个点依次为(4,1),(7,1),(4,5).将各点用线段依次连结起来,所得图形如图(1)所示,与原图形相比三角形的形状、大小不变,整个三角形向右平移了2个单位长度.
(2)横坐标不变,纵坐标分别加1,得三个点依次为(2,2),(5,2),(2,6).将各点用线段依次连结起来,所得图形如图(2)所示,与原图形相比,三角形的形状、大小不变,整个三角形向上平移了1个单位长度.
(3)纵坐标不变,横坐标分别变为原来的2倍,得三个点依次为(4,1),(10,1),(4,5).将各点用线段依次连结起来,所得图形如图(3)所示,与原图形相比,整个三角形被横向拉长为原来的2倍.
Tag:八年级数学教学设计,八年级数学教学设计方案,教学设计 - 数学教学设计 - 八年级数学教学设计
上一篇:轴对称变换2