相似三角形的性质教学片断
[04-06 03:56:57] 来源:http://www.89xue.com 九年级数学教学设计 阅读:9698次
摘要: 如图所示,如果ΔABC∽ΔA1B1C1,AD是BC边上的高,A1D1是B1C1边上的高,且 =k,请大家猜想: 与相似比有何关系? 生: = =k 师:猜想要经过证明才能作为结论使用,请大家想一想,如何证明? (留几分钟给学生思考) 分析:在这里要通过三角形相似去证比例式,先要看所证的比例式在哪两个三角形中,在这里是在ΔABD与ΔA1B1D1中,只需要证这两个三角形相似即可。再想想:要证这两个三角形相似,具备了哪些条件,还差哪些条件? 请大家写出证明过程(此时大多数学生已能找到证题思路) 证明:∵ΔABC∽&。
相似三角形的性质教学片断,标签:九年级数学教学设计方案,http://www.89xue.com
如图所示,如果ΔABC∽ΔA1B1C1,AD是BC边上的高,A1D1是B1C1边上的高,且 =k,请大家猜想: 与相似比有何关系?
生: = =k
师:猜想要经过证明才能作为结论使用,请大家想一想,如何证明?
(留几分钟给学生思考)
分析:在这里要通过三角形相似去证比例式,先要看所证的比例式在哪两个三角形中,在这里是在ΔABD与ΔA1B1D1中,只需要证这两个三角形相似即可。再想想:要证这两个三角形相似,具备了哪些条件,还差哪些条件?
请大家写出证明过程(此时大多数学生已能找到证题思路)
证明:∵ΔABC∽ΔA1B1C1,
∴∠B=∠B1
又∵AD是BC边上的高,A1D1是B1C1边上的高
∴∠ADB=∠A1D1B1=90°
∴ΔABD∽ΔA1B1D1(AA)
∴ = =k
师:请大家用语言来总结这个结论?
生:相似三角形的对应高的比等于相似比。
邓亚平:老师,我认为还可以总结得更一般点?
师:说说你的想法?
邓亚平:相似三角形的一切对应线段的比都等于相似比。
师:你们大家的看法呢?
生众:可以这样总结,我们也是这样认为的。
师:首先对这种思考方式表示赞赏,非常不错的。但要说明的是,根据一些特殊的结论来进行推广,属于我们合情推理的一部分,但这种推理有些是正确的,而有些会产生错误。能不能再举一点例子说明你们这个结论的正确性?
生:还有对应角平分线与中线可以用来证明这个结论(情绪高涨)。
www.89xue.com 师:好的,来看一看,如何证明?
如图所示,如果ΔABC∽ΔA1B1C1,AD是∠BAC 的角平分线,A1D1是∠B1A1C1的角平分线,且 =k,试证: = =k。
生:简单,证得∠BAD=∠B1A1D1即可。
师:大家在学习新东西的时候切勿眼高手低,一定要塌实的完成例题,否则很容易导致失误。另外数学的书写格式很重要,特别对于考试来说,步骤是按步得分,如果有跳步现象就是要被扣分,如果有重复书写,就是浪费了时间。所以还是请大家认真写出证明过程来。
生:∵ΔABC∽ΔA1B1C1,
∴∠BAC=∠B1A1C1
又∵AD是∠BAC 的角平分线,A1D1是∠B1A1C1的角平分线
∴∠BAD= ∠BAC,∠B1A1D1= ∠B1A1C1
∴∠BAD=∠B1A1D1
∴ΔABD∽ΔA1B1D1(AA)
∴ = =k
师:没有写清楚的同学请自己改正,这个问题解决了,对应中线的比呢?
如图所示,如果ΔABC∽ΔA1B1C1,AD是BC边上的中线,A1D1是B1C1边上的中线,且 =k,试说明: = =k。
生:一样的证明。
师:是一样吗?再仔细看看。
生众:有一点不一样,就是要利用 (S顶上的字母r表示成比例的意思,以后同)来证ΔABD∽ΔA1B1D1( )。
师:是的,要细心一点,请大家写出证明过程。
生:∵ΔABC∽ΔA1B1C1,
∴∠B=∠B1
又∵AD是BC边上的中线,A1D1是B1C1边上的中线
∴BC=2BD,B1C1=2B1D1
∴
∴
∴ΔABD∽ΔA1B1D1( )
如图所示,如果ΔABC∽ΔA1B1C1,AD是BC边上的高,A1D1是B1C1边上的高,且 =k,请大家猜想: 与相似比有何关系?
生: = =k
师:猜想要经过证明才能作为结论使用,请大家想一想,如何证明?
(留几分钟给学生思考)
分析:在这里要通过三角形相似去证比例式,先要看所证的比例式在哪两个三角形中,在这里是在ΔABD与ΔA1B1D1中,只需要证这两个三角形相似即可。再想想:要证这两个三角形相似,具备了哪些条件,还差哪些条件?
请大家写出证明过程(此时大多数学生已能找到证题思路)
证明:∵ΔABC∽ΔA1B1C1,
∴∠B=∠B1
又∵AD是BC边上的高,A1D1是B1C1边上的高
∴∠ADB=∠A1D1B1=90°
∴ΔABD∽ΔA1B1D1(AA)
∴ = =k
师:请大家用语言来总结这个结论?
生:相似三角形的对应高的比等于相似比。
邓亚平:老师,我认为还可以总结得更一般点?
师:说说你的想法?
邓亚平:相似三角形的一切对应线段的比都等于相似比。
师:你们大家的看法呢?
生众:可以这样总结,我们也是这样认为的。
师:首先对这种思考方式表示赞赏,非常不错的。但要说明的是,根据一些特殊的结论来进行推广,属于我们合情推理的一部分,但这种推理有些是正确的,而有些会产生错误。能不能再举一点例子说明你们这个结论的正确性?
生:还有对应角平分线与中线可以用来证明这个结论(情绪高涨)。
www.89xue.com 师:好的,来看一看,如何证明?
如图所示,如果ΔABC∽ΔA1B1C1,AD是∠BAC 的角平分线,A1D1是∠B1A1C1的角平分线,且 =k,试证: = =k。
生:简单,证得∠BAD=∠B1A1D1即可。
师:大家在学习新东西的时候切勿眼高手低,一定要塌实的完成例题,否则很容易导致失误。另外数学的书写格式很重要,特别对于考试来说,步骤是按步得分,如果有跳步现象就是要被扣分,如果有重复书写,就是浪费了时间。所以还是请大家认真写出证明过程来。
生:∵ΔABC∽ΔA1B1C1,
∴∠BAC=∠B1A1C1
又∵AD是∠BAC 的角平分线,A1D1是∠B1A1C1的角平分线
∴∠BAD= ∠BAC,∠B1A1D1= ∠B1A1C1
∴∠BAD=∠B1A1D1
∴ΔABD∽ΔA1B1D1(AA)
∴ = =k
师:没有写清楚的同学请自己改正,这个问题解决了,对应中线的比呢?
如图所示,如果ΔABC∽ΔA1B1C1,AD是BC边上的中线,A1D1是B1C1边上的中线,且 =k,试说明: = =k。
生:一样的证明。
师:是一样吗?再仔细看看。
生众:有一点不一样,就是要利用 (S顶上的字母r表示成比例的意思,以后同)来证ΔABD∽ΔA1B1D1( )。
师:是的,要细心一点,请大家写出证明过程。
生:∵ΔABC∽ΔA1B1C1,
∴∠B=∠B1
又∵AD是BC边上的中线,A1D1是B1C1边上的中线
∴BC=2BD,B1C1=2B1D1
∴
∴
∴ΔABD∽ΔA1B1D1( )
Tag:九年级数学教学设计,九年级数学教学设计方案,教学设计 - 数学教学设计 - 九年级数学教学设计
上一篇:三视图教学设计