相似三角形的性质教学片断
[04-06 03:56:57] 来源:http://www.89xue.com 九年级数学教学设计 阅读:9698次
摘要: ∴ = =k 师:谁来总结一下这个小结论? 生:相似三角形的对应中线的比等于相似比。 师:你们说的是一切对应线段的比等于相似比,这几个也是特殊的,我也要难一难你们,更一般地,能证明下面的结论吗? 如图所示,如果ΔABC∽ΔA1B1C1, D是BC边上的点,且BD= BC;D1是B1C1边上的点,且B1D1= B1C1,且 =k,试说明: = =k。 生:这个简单,把上面证明中 “又∵AD是BC边上的中线,A1D1是B1C1边上的中线 ∴BC=2BD,B1C1=2B1D1 ∴ &rd。
相似三角形的性质教学片断,标签:九年级数学教学设计方案,http://www.89xue.com
∴ = =k
师:谁来总结一下这个小结论?
生:相似三角形的对应中线的比等于相似比。
师:你们说的是一切对应线段的比等于相似比,这几个也是特殊的,我也要难一难你们,更一般地,能证明下面的结论吗?
如图所示,如果ΔABC∽ΔA1B1C1, D是BC边上的点,且BD= BC;D1是B1C1边上的点,且B1D1= B1C1,且 =k,试说明: = =k。
生:这个简单,把上面证明中
“又∵AD是BC边上的中线,A1D1是B1C1边上的中线
∴BC=2BD,B1C1=2B1D1
∴ ”
改为:∵BD= BC,B1D1= B1C1
∴BC=3BD,B1C1=3B1D1
∴
师:呵呵!你们很会偷懒的,不过这里偷懒无罪,积极动脑该表扬,这也是积极动脑的表现,前面我们提到跳步的现象这里还不存在,这点我很满意,大家的态度是很认真的,在这里我更满意的是这里的“偷懒”行为。因为前面几位同学的步骤实在是太繁,我不想提出来,是希望激出某类“偷懒”的行为,现在成功了。主要是通过代换将式子化为我们的需要的式子。由衷的为你们的自发性成功道贺。不过别得意,好戏还在后头,我还要再难一难你们,接招:
把A、A1分别沿AB、A1B1移动到E、E1的位置,如下有:
如图所示,如果ΔABC∽ΔA1B1C1, D是BC边上的点,且BD= BC;D1是B1C1边上的点,且B1D1= B1C1;E点在AB上,且AE= AB;点E1在A1B1上,且A1E1= A1B1,有=k,试说明: = =k。
生:简单,只需要改动前面证明过程中比例式的左半部分就可以了。按您这么变,还可以更随意一点的。
师:是的,看来你们是能够说服我的了,因为这个定理是邓亚平先说出来的,尽管其它同学也在下面小声的说,我们把这个结论命名为……
学生(兴奋地)接话:邓亚平定理。(相似三角形一切对应线段的比等于相似比。)
师:好的,除了相似三角形外,更一般的……
生:相似形的一切对应线段的比等于相似比。
师:好的。同学们的总结的好处再于,我们把众多的结论归结为一个定理,不但使我们记忆负担减轻了(现在只需要记一个定理),更重要的是使我们的……
生接话:认识更深刻了。也利于这个知识的应用。
师:还有我们是站在一个系统的高度认识问题的。还有什么问题吗?
生:面积的比与相似比有何关系呢?
师:我也正想问呢,你们觉得呢?
生:(有的说等于相似比,有的说等于相似比的平方)
先看一个具体的例子:
如图,ΔABC与ΔA1B1C1相似比为1∶2,后者的面积为前者的多少倍?
生:后者是前者的4倍。
师:如果ΔABC与ΔA2B2C2相似比为1∶3呢?
生:后者的面积是ΔABC的面积的9倍。
师:根据这个特例,我们可以得出我们的猜想……
生:相似三角形面积的比等于相似比的平方。
师:如何证明呢?
如图所示,如果ΔABC∽ΔA1B1C1,AD是BC边上的高,A1D1是B1C1边上的高,且 =k,请大家证: =k2
师:请大家思考几分钟。
李伟上黑板做(其余同学在下面做):
李伟:∵ΔABC∽ΔA1B1C1,
∴ = = =k(相似三角形一切对应线段的比等于相似比)
又∵AD是BC边上的高,A1D1是B1C1边上的高
∴ = =k
师:谁来总结一下这个小结论?
生:相似三角形的对应中线的比等于相似比。
师:你们说的是一切对应线段的比等于相似比,这几个也是特殊的,我也要难一难你们,更一般地,能证明下面的结论吗?
如图所示,如果ΔABC∽ΔA1B1C1, D是BC边上的点,且BD= BC;D1是B1C1边上的点,且B1D1= B1C1,且 =k,试说明: = =k。
生:这个简单,把上面证明中
“又∵AD是BC边上的中线,A1D1是B1C1边上的中线
∴BC=2BD,B1C1=2B1D1
∴ ”
改为:∵BD= BC,B1D1= B1C1
∴BC=3BD,B1C1=3B1D1
∴
师:呵呵!你们很会偷懒的,不过这里偷懒无罪,积极动脑该表扬,这也是积极动脑的表现,前面我们提到跳步的现象这里还不存在,这点我很满意,大家的态度是很认真的,在这里我更满意的是这里的“偷懒”行为。因为前面几位同学的步骤实在是太繁,我不想提出来,是希望激出某类“偷懒”的行为,现在成功了。主要是通过代换将式子化为我们的需要的式子。由衷的为你们的自发性成功道贺。不过别得意,好戏还在后头,我还要再难一难你们,接招:
把A、A1分别沿AB、A1B1移动到E、E1的位置,如下有:
如图所示,如果ΔABC∽ΔA1B1C1, D是BC边上的点,且BD= BC;D1是B1C1边上的点,且B1D1= B1C1;E点在AB上,且AE= AB;点E1在A1B1上,且A1E1= A1B1,有=k,试说明: = =k。
生:简单,只需要改动前面证明过程中比例式的左半部分就可以了。按您这么变,还可以更随意一点的。
师:是的,看来你们是能够说服我的了,因为这个定理是邓亚平先说出来的,尽管其它同学也在下面小声的说,我们把这个结论命名为……
学生(兴奋地)接话:邓亚平定理。(相似三角形一切对应线段的比等于相似比。)
师:好的,除了相似三角形外,更一般的……
生:相似形的一切对应线段的比等于相似比。
师:好的。同学们的总结的好处再于,我们把众多的结论归结为一个定理,不但使我们记忆负担减轻了(现在只需要记一个定理),更重要的是使我们的……
生接话:认识更深刻了。也利于这个知识的应用。
师:还有我们是站在一个系统的高度认识问题的。还有什么问题吗?
生:面积的比与相似比有何关系呢?
师:我也正想问呢,你们觉得呢?
生:(有的说等于相似比,有的说等于相似比的平方)
先看一个具体的例子:
如图,ΔABC与ΔA1B1C1相似比为1∶2,后者的面积为前者的多少倍?
生:后者是前者的4倍。
师:如果ΔABC与ΔA2B2C2相似比为1∶3呢?
生:后者的面积是ΔABC的面积的9倍。
师:根据这个特例,我们可以得出我们的猜想……
生:相似三角形面积的比等于相似比的平方。
师:如何证明呢?
如图所示,如果ΔABC∽ΔA1B1C1,AD是BC边上的高,A1D1是B1C1边上的高,且 =k,请大家证: =k2
师:请大家思考几分钟。
李伟上黑板做(其余同学在下面做):
李伟:∵ΔABC∽ΔA1B1C1,
∴ = = =k(相似三角形一切对应线段的比等于相似比)
又∵AD是BC边上的高,A1D1是B1C1边上的高
Tag:九年级数学教学设计,九年级数学教学设计方案,教学设计 - 数学教学设计 - 九年级数学教学设计
上一篇:三视图教学设计