借助方程求解数轴上动点问题
[07-12 16:22:08] 来源:http://www.89xue.com 九年级数学教学设计 阅读:9434次
摘要:⑴求AB中点M对应的数;⑵现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,求C点对应的数;⑶若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D点相遇,求D点对应的数。 分析:⑴设AB中点M对应的数为x,由BM=MA所以x—(—20)=100—x,解得 x=40 即AB中点M对应的数为40⑵易知数轴上两点AB距离,AB=140,设PQ相向而行t秒在C点相遇,依题意有。
借助方程求解数轴上动点问题,标签:九年级数学教学设计方案,http://www.89xue.com
⑴求AB中点M对应的数; ⑵现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,求C点对应的数; ⑶若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D点相遇,求D点对应的数。 分析:⑴设AB中点M对应的数为x,由BM=MA 所以x—(—20)=100—x,解得 x=40 即AB中点M对应的数为40 ⑵易知数轴上两点AB距离,AB=140,设PQ相向而行t秒在C点相遇, 依题意有,4t+6t=120,解得t=12 (或由P、Q运动到C所表示的数相同,得—20+4t=100—6t,t=12) 相遇C点表示的数为:—20+4t=28(或100—6t=28) ⑶设运动y秒,P、Q在D点相遇,则此时P表示的数为100—6y,Q表示的数为—20—4y。P、Q为同向而行的追及问题。 依题意有,6y—4y=120,解得y=60 (或由P、Q运动到C所表示的数相同,得—20—4y=100—6y,y=60) D点表示的数为:—20—4y=—260 (或100—6y=—260) 点评:熟悉数轴上两点间距离以及数轴上动点坐标的表示方法是解决本题的关键。⑵是一个相向而行的相遇问题;⑶是一个同向而行的追及问题。在⑵、⑶中求出相遇或追及的时间是基础。 例3.已知数轴上两点A、B对应的数分别为—1,3,点P为数轴上一动点,其对应的数为x。 ⑴若点P到点A、点B的距离相等,求点P对应的数;
不错哦 ⑵数轴上是否存在点P,使点P到点A、点B的距离之和为5?若存在,请求出x的值。若不存在,请说明理由? ⑶当点P以每分钟一个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度向左运动,点B一每分钟20个单位长度向左运动,问它们同时出发,几分钟后P点到点A、点B的距离相等? 分析:⑴如图,若点P到点A、点B的距离相等,P为AB的中点,BP=PA。
依题意,3—x=x—(—1),解得x=1
⑵由AB=4,若存在点P到点A、点B的距离之和为5,P不可能在线段AB上,只能在A点左侧,或B点右侧。
①P在点A左侧,PA=—1—x,PB=3—x
依题意,(—1—x)+(3—x)=5,解得 x=—1.5
②P在点B右侧,PA=x—(—1)=x+1,PB=x—3
依题意,(x+1)+(x—3)=5,解得 x=3.5
⑶点P、点A、点B同时向左运动,点B的运动速度最快,点P的运动速度最慢。故P点总位于A点右侧,B可能追上并超过A。P到A、B的距离相等,应分两种情况讨论。
设运动t分钟,此时P对应的数为—t,B对应的数为3—20t,A对应的数为—1—5t。
①B未追上A时,PA=PA,则P为AB中点。B在P的右侧,A在P的左侧。
PA=—t—(—1—5t)=1+4t,PB=3—20t—(—t)=3—19t
依题意有,1+4t=3—19t,解得 t=
②B追上A时,A、B重合,此时PA=PB。A、B表示同一个数。
依题意有,—1—5t=3—20t,解得 t=
⑴求AB中点M对应的数; ⑵现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,求C点对应的数; ⑶若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D点相遇,求D点对应的数。 分析:⑴设AB中点M对应的数为x,由BM=MA 所以x—(—20)=100—x,解得 x=40 即AB中点M对应的数为40 ⑵易知数轴上两点AB距离,AB=140,设PQ相向而行t秒在C点相遇, 依题意有,4t+6t=120,解得t=12 (或由P、Q运动到C所表示的数相同,得—20+4t=100—6t,t=12) 相遇C点表示的数为:—20+4t=28(或100—6t=28) ⑶设运动y秒,P、Q在D点相遇,则此时P表示的数为100—6y,Q表示的数为—20—4y。P、Q为同向而行的追及问题。 依题意有,6y—4y=120,解得y=60 (或由P、Q运动到C所表示的数相同,得—20—4y=100—6y,y=60) D点表示的数为:—20—4y=—260 (或100—6y=—260) 点评:熟悉数轴上两点间距离以及数轴上动点坐标的表示方法是解决本题的关键。⑵是一个相向而行的相遇问题;⑶是一个同向而行的追及问题。在⑵、⑶中求出相遇或追及的时间是基础。 例3.已知数轴上两点A、B对应的数分别为—1,3,点P为数轴上一动点,其对应的数为x。 ⑴若点P到点A、点B的距离相等,求点P对应的数;
不错哦 ⑵数轴上是否存在点P,使点P到点A、点B的距离之和为5?若存在,请求出x的值。若不存在,请说明理由? ⑶当点P以每分钟一个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度向左运动,点B一每分钟20个单位长度向左运动,问它们同时出发,几分钟后P点到点A、点B的距离相等? 分析:⑴如图,若点P到点A、点B的距离相等,P为AB的中点,BP=PA。



Tag:九年级数学教学设计,九年级数学教学设计方案,教学设计 - 数学教学设计 - 九年级数学教学设计
上一篇:2014年广州市中考数学模拟试题