弧长和扇形面积教案4
教学内容
1.n°的圆心角所对的弧长L=
2.扇形的概念;
3.圆心角为n°的扇形面积是S扇形= ;
4.应用以上内容解决一些具体题目.
教学目标
了解扇形的概念,理解n°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用.
通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长L= 和扇形面积S扇= 的计算公式,并应用这些公式解决一些题目.
重难点、关键
1.重点:n°的圆心角所对的弧长L= ,扇形面积S扇= 及其它们的应用.
2.难点:两个公式的应用.
3.关键:由圆的周长和面积迁移到弧长和扇形面积公式的过程.
教具、学具准备
小黑板、圆规、直尺、量角器、纸板.
教学过程
一、复习引入
(老师口问,学生口答)请同学们回答下列问题.
1.圆的周长公式是什么?
2.圆的面积公式是什么?
3.什么叫弧长?
老师点评:(1)圆的周长C=2 R(2)圆的面积S图= R2(3)弧长就是圆的一部分.
二、探索新知
(小黑板)请同学们独立完成下题:设圆的半径为R,则:
1.圆的周长可以看作______度的圆心角所对的弧.
2.1°的圆心角所对的弧长是_______.
3.2°的圆心角所对的弧长是_______.
4.4°的圆心角所对的弧长是_______. ……
5.n°的圆心角所对的弧长是_______.
(老师点评)根据同学们的解题过程,我们可得到:
n°的圆心角所对的弧长为
例1制作弯形管道时,需要先按中心线计算"展直长度"再下料,试计算如图所示的管道的展直长度,即 的长(结果精确到0.1mm)
分析:要求 的弧长,圆心角知,半径知,只要代入弧长公式即可.
解:R=40mm,n=110
∴ 的长= = ≈76.8(mm)
因此,管道的展直长度约为76.8mm.
问题:(学生分组讨论)在一块空旷的草地上有一根柱子,柱子上拴着一条长5m的绳子,绳子的另一端拴着一头牛,如图所示:
(1)这头牛吃草的最大活动区域有多大?
(2)如果这头牛只能绕柱子转过n°角,那么它的最大活动区域有多大?
学生提问后,老师点评:(1)这头牛吃草的最大活动区域是一个以A(柱子)为圆心,5m为半径的圆的面积.
(2)如果这头牛只能绕柱子转过n°角,那么它的最大活动区域应该是n°圆心角的两个半径的n°圆心角所对的弧所围成的圆的一部分的图形,如图:
像这样,由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.
(小黑板),请同学们结合圆心面积S= R2的公式,独立完成下题:
1.该图的面积可以看作是_______度的圆心角所对的扇形的面积.
2.设圆的半径为R,1°的圆心角所对的扇形面积S扇形=_______.
3.设圆的半径为R,2°的圆心角所对的扇形面积S扇形=_______.
4.设圆的半径为R,5°的圆心角所对的扇形面积S扇形=_______.
……
5.设圆半径为R,n°的圆心角所对的扇形面积S扇形=_______.
老师检察学生练习情况并点评
1.360 2.S扇形= R2 3.S扇形= R2 4.S扇形= 5.S扇形=