与圆有关的位置关系教案
教学内容
1.设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外 d>r;点P在圆上 d=r;点P在圆内 d<r.
2.不在同一直线上的三个点确定一个圆.
3.三角形外接圆及三角形的外心的概念.
4.反证法的证明思路.
教学目标
1.理解并掌握设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外 d>r;点P在圆上 d=r;点P在圆内 d<r及其运用.
2.理解不在同一直线上的三个点确定一个圆并掌握它的运用.
3.了解三角形的外接圆和三角形外心的概念.
4.了解反证法的证明思想.
复习圆的两种定理和形成过程,并经历探究一个点、两个点、三个点能作圆的结论及作图方法,给出不在同一直线上的三个点确定一个圆.接下去从这三点到圆心的距离逐渐引入点P到圆心距离与点和圆位置关系的结论并运用它们解决一些实际问题.
重难点、关键
1.重点:点和圆的位置关系的结论:不在同一直线上的三个点确定一个圆其它们的运用.
2.难点:讲授反证法的证明思路.
3.关键:由一点、二点、三点、四点作圆开始导出不在同一直线上的三个点确定一个圆.
教学过程
一、复习引入
(学生活动)请同学们口答下面的问题.
1.圆的两种定义是什么?
2.你能至少举例两个说明圆是如何形成的?
3.圆形成后圆上这些点到圆心的距离如何?
4.如果在圆外有一点呢?圆内呢?请你画图想一想.
老师点评:(1)在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆;圆心为O,半径为r的圆可以看成是所有到定点O的距离等于定长r的点组成的图形.
(2)圆规:一个定点,一个定长画圆.
(3)都等于半径.
(4)经过画图可知,圆外的点到圆心的距离大于半径;圆内的点到圆心的距离小于半径.
二、探索新知
由上面的画图以及所学知识,我们可知:
设⊙O的半径为r,点P到圆心的距离为OP=d
则有:点P在圆外 d>r
点P在圆上 d=r
点P在圆内 d<r
反过来,也十分明显,如果d>r 点P在圆外;如果d=r 点P在圆上;如果d<r 点P在圆内.
因此,我们可以得到:
这个结论的出现,对于我们今后解题、判定点P是否在圆外、圆上、圆内提供了依据.
下面,我们接下去研究确定圆的条件:
(学生活动)经过一点可以作无数条直线,经过二点只能作一条直线,那么,经过一点能作几个圆?经过二点、三点呢?请同学们按下面要求作圆.
(1)作圆,使该圆经过已知点A,你能作出几个这样的圆?
(2)作圆,使该圆经过已知点A、B,你是如何做的?你能作出几个这样的圆?其圆心的分布有什么特点?与线段AB有什么关系?为什么?
(3)作圆,使该圆经过已知点A、B、C三点(其中A、B、C三点不在同一直线上),你是如何做的?你能作出几个这样的圆?
老师在黑板上演示:
(1)无数多个圆,如图1所示.
(2)连结A、B,作AB的垂直平分线,则垂直平分线上的点到A、B的距离都相等,都满足条件,作出无数个.
其圆心分布在AB的中垂线上,与线段AB互相垂直,如图2所示.
(1) (2) (3)