中考一元二次方程综合题例析
[07-12 16:21:47] 来源:http://www.89xue.com 九年级数学教学设计 阅读:9381次
摘要:一元二次方程综合题是中考热点,常常结合其他方面知识进行考查,下面通过几个例子进行分类解析。 一、一元二次方程与一次函数综合 例1.(2010年绵阳市).已知关于x的一元二次方程x2 = 2(1-m)x-m2 的两实数根为x1,x2.(1)求m的取值范围;(2)设y = x1 + x2,当y取得最小值时,求相应m的值,并求出最小值. 分析:(1)若一元二次方程有两不等根,则根的判别式△=b2-4ac≥0,建立关于m的不等式,可求出m的取值范围;(2)根据根与系数的关系可得出x1+x2的表达式,进而可得出y、m的函数关系式,根据函数的性质及(1)题得出的自变量的取值范围,即可求出y的最小值及对应的m值. 解:(。
中考一元二次方程综合题例析,标签:九年级数学教学设计方案,http://www.89xue.com
一元二次方程综合题是中考热点,常常结合其他方面知识进行考查,下面通过几个例子进行分类解析。 一、一元二次方程与一次函数综合 例1.(2010年绵阳市).已知关于x的一元二次方程x2 = 2(1-m)x-m2 的两实数根为x1,x2. (1)求m的取值范围; (2)设y = x1 + x2,当y取得最小值时,求相应m的值,并求出最小值. 分析:(1)若一元二次方程有两不等根,则根的判别式△=b2-4ac≥0,建立关于m的不等式,可求出m的取值范围;(2)根据根与系数的关系可得出x1+x2的表达式,进而可得出y、m的函数关系式,根据函数的性质及(1)题得出的自变量的取值范围,即可求出y的最小值及对应的m值. 解:(1)将原方程整理为 x(m-1)x + m2 = 0.2 + 2 ∵ 原方程有两个实数根, ∴ △= [ 2(m-1)2-4m2 =-8m + 4≥0,得 m≤. (2) ∵ x1,x2为x2 + 2(m-1)x + m2 = 0的两根, ∴ y = x1 + x2 =-2m + 2,且m≤. 因而y随m的增大而减小,故当m =时,取得最小值1. 二、一元二次方程与反比例函数综合 例2(2010年山东淄博改编)已知关于x的方程.若以方程的两个根为横坐标、纵坐标的点恰在反比例函数
一元二次方程综合题是中考热点,常常结合其他方面知识进行考查,下面通过几个例子进行分类解析。 一、一元二次方程与一次函数综合 例1.(2010年绵阳市).已知关于x的一元二次方程x2 = 2(1-m)x-m2 的两实数根为x1,x2. (1)求m的取值范围; (2)设y = x1 + x2,当y取得最小值时,求相应m的值,并求出最小值. 分析:(1)若一元二次方程有两不等根,则根的判别式△=b2-4ac≥0,建立关于m的不等式,可求出m的取值范围;(2)根据根与系数的关系可得出x1+x2的表达式,进而可得出y、m的函数关系式,根据函数的性质及(1)题得出的自变量的取值范围,即可求出y的最小值及对应的m值. 解:(1)将原方程整理为 x(m-1)x + m2 = 0.2 + 2 ∵ 原方程有两个实数根, ∴ △= [ 2(m-1)2-4m2 =-8m + 4≥0,得 m≤. (2) ∵ x1,x2为x2 + 2(m-1)x + m2 = 0的两根, ∴ y = x1 + x2 =-2m + 2,且m≤. 因而y随m的增大而减小,故当m =时,取得最小值1. 二、一元二次方程与反比例函数综合 例2(2010年山东淄博改编)已知关于x的方程.若以方程的两个根为横坐标、纵坐标的点恰在反比例函数
[1] [2] [3] [4] [5] [6] [7] [8] 下一页
Tag:九年级数学教学设计,九年级数学教学设计方案,教学设计 - 数学教学设计 - 九年级数学教学设计
上一篇:圆周角第一课时教学设计